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There are lots of pretrained foundation models…

• Large language models (LLMs)

• ChatGPT, GPT-4,…

• Vision language models

• CLIP, BLIP, …

• Visual generation models

• Stable Diffusion, …

• Research Q1: How can we efficiently train or finetune foundation models.

• Research Q2: How can we build strong open-world multimodal understanding 

and generation models with these pretrained foundation models
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Efficient Finetune Foundation Models
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https://arxiv.org/pdf/2410.20178
(NeurIPS’24)
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https://arxiv.org/pdf/2410.20178


Prior Work on Multimodal LLMs

• Single-modality MLLM (only image modality)

• Multiple-modality MLLM (different projector 
parameters are different)

• Multiple-modality MLLM (mixture multi-
modal data for training)
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Modality-Efficient Training for X-Modal Reasoning
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Jiazuo Yu, et al. LLMs can Evolve Continually on 
Modality for X-Modal Reasoning. In NeurIPS, 2024.
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课程介绍近五年承担的国家级重大重点项目情况
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“Please describe this video in detail.”

“In the video, a group of young men are 

playing a game of ultimate frisbee in a grassy 

field two players are jump.” 

“Please describe this audio in detail.”

“In the audio, a group of young men are 

playing a game of ultimate frisbee in a grassy 

field two players are jump.” 

!

!
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“Please describe this depth in detail.”
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“In the depth, a group of young men are 

playing a game of ultimate frisbee in a grassy 

field two players are jump.” 

!

!

!

Video Modality TrainingAudio Modality TrainingDepth Modality Training

Modality-Efficient Training for X-Modal Reasoning

Jiazuo Yu, et al. LLMs can Evolve Continually on Modality for X-Modal Reasoning. In NeurIPS, 2024.
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Modality-Efficient Training for X-Modal Reasoning

• PathWeave: It can performs well on all previous trained modalities

Jiazuo Yu, et al. LLMs can Evolve Continually on Modality for X-Modal Reasoning. In NeurIPS, 2024.

Please describe this image 

in detail.
What is the man doing?

How do you feel when you 

hear the audio?

What can you see in this 

depth?
What is the 3d model?
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Multimodal Understanding & Generation with
Efficient Finetune Foundation Models

Open-World Perception
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https://arxiv.org/abs/2408.16266
(Under Review)

https://arxiv.org/abs/2305.12476
(NeurIPS’23)
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https://arxiv.org/abs/2408.16266
https://arxiv.org/abs/2305.12476


Diffusion Model for Closed-set Perception

• Diffusion model is a text-to-image generation model.

• We can use diffusion model to conduct data augmentation.

Y. Wang, et al. Inversion Circle Interpolation: Diffusion-based Image Augmentation for Data-scarce Classification. Under Review.
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Diffusion Model for Data Augmentation
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Y. Wang, et al. Improving Diffusion-Based Data Augmentation with Inversion Spherical Interpolation. Under Review.



Diffusion Model for Data Augmentation
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Y. Wang, et al. Improving Diffusion-Based Data Augmentation with Inversion Spherical Interpolation. Under Review.



LLM + CLIP for Zero-Shot Perception

• LLMs can generate detailed descriptions to help zero-shot classification

Alec Radford, et al. Learning Transferable Visual Models From Natural Language Supervision. In ICML, 2021.
Sachit Menon, et al. Visual Classification via Description from Large Language Models. In ICLR, 2023.
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CLIP for zero-shot classification LLMs can generate descriptions



LLM for Zero-Shot Classification

• Using LLMs to generate detailed descriptions for “challenging” tasks

• zero-shot relation classification

Lin Li, et al. Zero-Shot Visual Relation Detection via Composite Visual Cues from Large Language Models. In NeurIPS, 2023.

16



LLM + CLIP for Zero-Shot Perception
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Lin Li, et al. Zero-Shot Visual Relation Detection via Composite Visual Cues from Large Language Models. In NeurIPS, 2023.



LLM + CLIP for Zero-Shot Perception
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Lin Li, et al. Zero-Shot Visual Relation Detection via Composite Visual Cues from Large Language Models. In NeurIPS, 2023.



Multimodal Understanding & Generation with
Efficient Finetune Foundation Models

Open-World Perception Multimodal Reasoning
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https://arxiv.org/abs/2305.14985
(EMNLP’23 Findings)

https://arxiv.org/abs/2312.05434
(EMNLP’23 Findings)
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https://arxiv.org/abs/2305.14985
https://arxiv.org/abs/2312.05434


LLMs for Harmful Memes Detection

• Harmful Memes Detection

Hongzhan Lin, et al. Beneath the Surface: Unveiling Harmful Memes with Multimodal Reasoning Distilled from Large Language Models. In EMNLP Findings, 2023.
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Disclaimer: This paper contains discriminatory content that may be disturbing to some readers, where meme examples and words are offensive or hateful in nature. These contents are 
provided for illustrative purposes only and do not represent the views and standpoints of the authors.



LLMs for Harmful Memes Detection

22

Hongzhan Lin, et al. Beneath the Surface: Unveiling Harmful Memes with Multimodal Reasoning Distilled from Large Language Models. In EMNLP Findings, 2023.

Disclaimer: This paper contains discriminatory content that may be disturbing to some readers, where meme examples and words are offensive or hateful in nature. These contents are 
provided for illustrative purposes only and do not represent the views and standpoints of the authors.



LLMs for “Complex” Visual Question Answering

• IdealGPT
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Haoxuan You, et al. IdealGPT: Iteratively Decomposing Vision and Language Reasoning via Large Language Models. In EMNLP Findings, 2023.



Multimodal Understanding & Generation with
Efficient Finetune Foundation Models

Open-World Perception Multimodal Reasoning

Visual Generation & Editing
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Zhen Wang, et al. Event-Customized Image Generation. Under Review

https://arxiv.org/abs/2410.02483
(Under Review)

Event Customization

https://arxiv.org/abs/2410.02483
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Ziqi Jiang, et al. CLIPDrag: Combining Text-based and Drag-based Instructions for Image Editing. In ICLR, 2025.

https://openreview.net/pdf?id=2HjRezQ1nj
(ICLR 2025)

Image Editing

https://openreview.net/pdf?id=2HjRezQ1nj
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Hongxiang Li, et al. DisPose: Disentangling Pose Guidance for Controllable Human Image Animation. In ICLR, 2025.

https://arxiv.org/pdf/2412.09349
(ICLR 2025)

Github: https://github.com/lihxxx/DisPose  (300+ stars)

Controllable Video Generation

https://arxiv.org/pdf/2412.09349
https://github.com/lihxxx/DisPose%20(300
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Hongxiang Li, et al. DisPose: Disentangling Pose Guidance for Controllable Human Image Animation. In ICLR, 2025.

https://arxiv.org/pdf/2412.09349
(ICLR 2025)

Controllable Video Generation
Demo: https://anonymous.4open.science/r/DisPose-AB1D

https://arxiv.org/pdf/2412.09349
https://anonymous.4open.science/r/DisPose-AB1D


Yuxuan Wang, et al. View-Consistent 3D Editing with Gaussian Splatting. In ECCV, 2024.

https://arxiv.org/abs/2403.11868
(ECCV’24)
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3DGS Editing

https://arxiv.org/abs/2403.11868


3D Mesh Generation
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Yuxuan Wang, et al. Nautilus: Locality-aware Autoencoder for Scalable Mesh Generation. Under Review.

Homepage: https://nautilusmeshgen.github.io/

https://nautilusmeshgen.github.io/


3D Mesh Generation
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Yuxuan Wang, et al. Nautilus: Locality-aware Autoencoder for Scalable Mesh Generation. Under Review.



Multimodal Understanding & Generation with
Efficient Finetune Foundation Models

Open-World Perception Multimodal Reasoning

Visual Generation & Editing Multimodal Generation
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• CoMM: A New Multimodal Benchmark
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Wei Chen, et al. CoMM: A Coherent Interleaved Image-Text Dataset for Multimodal Understanding and Generation. Under Review.

https://arxiv.org/abs/2406.10462
(Under Review)

https://arxiv.org/abs/2406.10462


Higher Quality Multimodal Data

• CoMM

Wei Chen, et al. CoMM: A Coherent Interleaved Image-Text Dataset for Multimodal Understanding and Generation. Under Review.
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